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Abstract  

 

 

Dementia is a progressive illness which affects quality of life for millions of 

people every year. It has a complex pathology with a variety of associated 

lifestyle, medical, demographic, genetic and biological factors. Early intervention 

can delay or mitigate the impact, but early diagnosis is challenging because it 

depends on observable cognitive decline. To aid clinicians in dementia diagnosis, 

Machine Learning techniques can be used to predict individual risk from an array 

of clinical and biomarker features. However, biomarkers are expensive and 

invasive to collect, posing financial and ethical barriers to their use. 

Hypergraphs can model higher-order relationship which other data structures 

cannot and can use inference from these relationships to classify data. To date, 

no study has explored the potential of an explainable hypergraph neural network 

to predict dementia progression using only clinical and genetic features without 

other biomarkers. In this work, we fulfil this objective with a cutting-edge 

Equivariant Hypergraph Neural Network (EHNN) augmented with a self-

explainable module to observe the model’s reasoning.  

Using EHNN with cost-sensitive learning to predict dementia progression over 3 

years, we achieve an 𝐹1 score of 0.73, 79% accuracy, an 𝐴𝑈𝐶𝑅𝑂𝐶  of 0.86 and an 

𝐴𝑈𝐶𝑅𝑂𝐶  of 0.75 (against baseline 0.34), showing good skill distinguishing 

positive and negative classes while minimizing false negatives, both clinically 

important capabilities. We incorporate a factual and counter-factual self-

explainability module and demonstrate that explainability does not have to come 

at the cost of performance. Indeed, not only does this maintain the 𝐹1 score of 

0.73, but also improves 𝐴𝑈𝐶𝑅𝑂𝐶  to 0.87 and 𝐴𝑈𝐶𝑅𝑂𝐶  to 0.76.  

Finally, we perform high level analysis on the explainable outputs and find that 

current cognitive test scores are a good indicator of future dementia progression, 

agreeing with existing literature. We find some surprising results, that APOE4 

and family history of dementia do not correlate with dementia prediction in the 

model’s reasoning; however, further evidence shows that this is likely a 

misinterpretation of the outputs and that instead, the model uses this information 

as a signal to concentrate on other risk factors. 

This study finds that Explainable Hypergraph Neural Networks can provide 

clinically meaningful results both in predicting dementia progression with low-
cost, non-invasive features and in explaining dementia risk factors in large 

groups. However, the underlying data contains many biases and additional work 

is needed in explaining the model’s outputs before such a model can be 

recommended for clinical deployment. 
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Chapter 1  

Introduction 

This chapter introduces the problem under investigation and existing challenges faced 

in addressing it. We then discuss specific objectives in relation to the problem, 

contributions to the field and the overall structure of the dissertation. 

1.1 Problem Space: Predicting Dementia Progression 

According to the World Health Organisation (WHO, 2023), more than fifty-five 

million people suffer from dementia with sixty percent living in low- and middle-

income countries. The aetiology of the disease is complex, and there are many sub-

types. There is no cure, but early interventions can alleviate symptoms (Livingston et 

al., 2017). Therefore, predicting dementia progression can lead to improved outcomes.  

Dementia progression prediction is a growing research field; however, studies have 

mainly focused on expensive and invasive biomarkers; the  majority of publications in 

the last two decades focus on neuroimaging as the key modality, particularly Positron 

Emission Topology (PET) (Battineni et al., 2022). Wittenberg et al, (2019) estimate it 

would cost £113 million to introduce 100,000 such scans in the UK National Health 

Service (NHS). A tracer fluid consumed for each scan accounts for eighty percent of 

the cost, so there is little economy of scale. Around twenty percent of the UK 

population, 13.5 million people, are over the age of sixty-five with seven percent 

affected by the most common dementia sub-type Alzheimer’s Disease (AD) (NHS, 

2018). It is, therefore, not financially feasible to scan every person over the age 65. 

Clinical and non-invasive markers are cheaper to collect: Genetic testing kits for AD 

can be privately purchased in the UK for £149 (Alzheimer’s Society, n.d.) and many 

clinical markers are already present in medical records or can be recorded though 

patient assessments.  They can tell us a lot about an individual’s risk: genetic profile, 

education level, hearing loss, hypertension and obesity together contribute twenty-

seven percent of known early- and mid-life dementia risk while smoking, depression, 

physical inactivity, social isolation and diabetes contribute fifteen percent of late-life 

risk  (Livingston et al., 2017). Further, there are complex interrelations between risks, 

demographics, and habits which may provide additional insight. For example, Yuan et 

al (2022) found a negative correlation between high BMI (Body Mass Index) and AD 
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risk as individuals age and Fitzhugh and Pa (2022) found that women with hearing 

loss have a higher risk than men with hearing loss. These clinical characteristics can 

provide significant insight into dementia risk without the need for more expensive and 

invasive investigations. 

We hypothesize that dementia risk prediction with only clinical markers can be 

improved by learning from the complex interrelationships between them. Existing 

studies using only clinical factors have been limited to modeling data in pairwise 

relationships between risk factor and disease probability (Rowe et al., 2021; Battineni 

et al., 2022). The key disadvantage of these models is an inability to account for 

polyadic relationships between risk factors in a population. 

Hypergraph neural networks are new Machine Learning (ML) techniques which take 

advantage of a hypergraph’s structure to model higher order relationships in data. A 

hypergraph allows multiple nodes to be connected with a single hyperedge whereas a 

graph edge can only join two nodes  (Torres et al., 2020). A hyperedge can thus model 

complex group relationships not possible with other data structures. Figure 1 

illustrates a simplified example for modeling dementia risk factors with a graph 

compared to a hypergraph. In this example, unlike the hypergraph, the graph is unable 

to capture the incidence of APOE4 alleles as a three-way group relationship. This study 

aims to leverage a hypergraph neural network for dementia progression prediction 

where individuals are represented as nodes and risk factors as hyperedges.  

 

Figure 1: Graph vs Hypergraph. Both the graph and hypergraph model the same data with 

patients as nodes, which can be classified as having progressed to dementia or not, and risk 

factors as (hyper)edges. Unlike the hypergraph, the graph cannot capture the higher order 

relationship that Patient A, C and D share the APOE4 alleles feature in a three-way relationship. 

 

No Dementia Progression Dementia Progression

Graph Hypergraph

APOE4 Alleles DepressionSmoker

Patient A

Patient B

Patient CPatient D

Patient E

Patient A

Patient B

Patient C
Patient D

Patient E
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In addition to implementing a hypergraph neural network, this project aims to address 

another gap in dementia progression prediction: explainability. Many such studies are 

designed without consideration to clinical relevance or introspection (Ansart et al., 

2021). We tackle this issue by carefully defining our model’s goal in clinical terms 

and implementing an explainability module. Further, we aim to show that this is 

possible without harming performance, a common argument against using 

explainability techniques (Hatherley, Sparrow and Howard, 2022). 

1.2 Project Aims 

This exploratory project aims to apply a state-of-the-art hypergraph neural network 

model to predict progression of dementia using non-invasive, clinical and genetic 

features and to apply a self-explainability module. We will explore the use of the 

explainability module’s output as a means to understanding the model’s reasoning. 

1.3 Objectives 

• Create a hypergraph structure with clinical and genetic data for the prediction 

of dementia progression. 

• Train a hypergraph neural network to classify at-risk individuals for dementia 

progression with this data. 

• Modify the hypergraph neural network with a factual and counter-factual 

reasoning module. 

• Analyse the causal features identified by the hypergraph neural network. 

• Identify limitations of the data and model in order to make recommendations 

for future studies. 

1.4 Novel Contributions 

• Show hypergraph neural networks can outperform existing methods for 

dementia progression prediction with clinical and genetic features. 

• Show we can maintain dementia progression risk prediction performance with 

the hypergraph neural network when including a self-explainability module. 

• Assess the explainability-augmented hypergraph neural network’s limitations 

by examining the self-explainability module’s explanations for its dementia 

risk classifications. 
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1.5 Structure 

This dissertation will aim to fulfill these goals by following this structure: 

Chapter 1 – Introduction 

This chapter outlines, at a high level, the problem of dementia progression prediction, 

challenges in tackling it and the gap which this research fills. It describes the project’s 

objectives and novel contributions and the general structure of the dissertation. 

Chapter 2 – Literature and Technology Review 

In this chapter we provide background into the main topics which need to be 

understood to address the objectives: the clinical and research contexts for dementia 

and associated risk factors, the state of current literature on dementia progression 

prediction and a brief overview of hypergraph neural networks. 

Chapter 3 – Methodology, Data and Model 

This chapter sets out our specific research questions and how we will answer them. 

We first explain the overall process, then explain the choice of dataset, analyse it to 

understand its high-level shape and features before transforming it appropriately for a 

hypergraph neural network. We then discuss the specifics of the hypergraph neural 

network and explainability techniques we employ in our experiments, ending with a 

discussion on measuring model performance. 

Chapter 4 – Experiments, Results, and Analysis 

In this chapter we conduct a series of experiments with our hypergraph neural network 

model and explainability module demonstrating each contribution in turn. We first 

assess model performance with different sub-datasets and model hyper-parameters 

without the explainability module. We then implement the self-explainability module 

and observe its impact on model performance across a range of hyper-parameters, 

comparing the best result against those achieved without the module. Finally, we 

perform high level analysis on the module’s explanatory outputs. 

Chapter 5 – Conclusions 

This chapter provides a summary of our findings and contributions alongside 

limitations and suggestions for future work to address them. 

 

  



Explainable Hypergraph Neural Networks for the Prediction of Dementia Progression 

14 

Chapter 2  

Literature and Technology Review 

This chapter provides background into this project’s main topics. We first contrast how 

dementia is classified in clinical and research contexts, explaining why the former is 

more relevant for this project. Next, we explore some known risk factors and their role 

in clinical assessment. We then discuss the existing state of the literature for dementia 

progression prediction and introduce hypergraph neural networks as a classification 

tool. We end with a discussion on explainability and its clinical relevance. 

2.1 Defining Dementia for Classification 

To classify dementia, we must be able to first define it, and to predict progression of 

dementia, we need some understanding of the associated causes and risk factors. In 

this section, we explore dementia types and compare two contexts in which dementia 

is commonly defined: clinical and research, illustrated in Figure 2. We explain why 

we focus on a clinical definition and the existing clinical challenges with assessing 

dementia risk. 

 

 

Alzheimer’s 

Disease

Vascular 

Dementia

Lewy Body 

Dementia

Other

Dementia

Many Dementia Types

Clinical Context Research Context

Focus on 

objective 

disease 

aetiology

with 

biomarkers

Focus on 

diagnosis 

from medical 

history and 

cognitive 

exams Dementia 

Disease

Dementia 

Syndrome

Figure 2: Dementia Types and Contexts. Dementia is an umbrella term for several illnesses 

which manifest in cognitive decline. Clinical focus is on diagnosis and treatment of dementia 

syndrome. Research focuses on the precise physiological aetiology of dementia disease. 
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2.1.1 Types of dementia 

Dementia first appeared as a clinical diagnosis in the 18th century characterized only 

by observable behavioral changes, but by the end of the 19th century physiological 

links, such as temporal lobe atrophy, were established (Burns and Levy, 1994, pp.5–

15). Today, dementia is an umbrella term for a variety of specific illnesses with 

differing causes but manifesting in similar symptoms. Each type has a complicated, 

long-term and cascading pathology which varies greatly between individuals (Barnes 

and Lee, 2011; Tahami Monfared et al., 2022). The three most common types of 

dementia, in order, are: Alzheimer’s Disease, affecting fifty to eighty percent of cases 

and caused primarily by changes in amyloid-beta plaque buildup in the brain; Vascular 

Dementia, affecting up to thirty percent of cases and caused by vascular problems such 

as heart disease and strokes; and Lewy Body Dementia, caused by buildup of alpha-

synuclein in the brain and closely associated with Parkinson’s disease (Hobson, 2019, 

pp.30–35; Livingston et al., 2017). There are also forms of dementia associated with 

co-morbidities such as HIV (human immunodeficiency virus), alcohol abuse and 

traumatic brain injury but they are less common (Livingston et al., 2017). 

2.1.2 Diagnostic contexts for dementia 

There are two contexts in which dementia may have different diagnostic definitions: 

the clinical context, and the research context. The clinical context focuses on diagnosis 

and treatment within a subjective clinical setting whereas the research context seeks 

objective aetiological explanations which may be used for practical applications. In 

this section, we explore both contexts in relation to our research question. 

2.1.2.1 Dementia diagnosis in a clinical context 

In a clinical setting, dementia is primarily diagnosed through the use of cognition tests 

which are defined in frameworks such as the DSM (Diagnostic and Statistical Manual 

of Mental Disorders) and MMSE (Mini Mental State Examination) (Pelegrini et al., 

2019; Pais et al., 2020). Since pathology can manifest long before cognitive and 

behavioral changes (Van Der Schaar et al., 2022), a clinical diagnosis is likely to occur 

after the optimal time for interventions. While there are biomarkers, such as amyloid-

beta and tau protein levels, which can indicate potential dementia onset before external 

symptoms manifest, their preemptive use raises ethical and financial questions since 

they are invasive and expensive to collect (Ford, Milne and Curlewis, 2023). Further, 

Van Der Schaar et al (2022, p.8) highlight that the majority of cognitively healthy 

individuals who have abnormal biomarkers do not develop dementia. Therefore, the 

clinical approach to assessing dementia focuses on the cheaper, externally measurable, 

and less ethically ambiguous signs of dementia. 
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2.1.2.2 Dementia diagnosis in a research context 

When conducting aetiological research, the National Institute on Aging – Alzheimer’s 

Association (NIA-AA) strongly encourages researchers to focus on a biological 

classification of AD with biomarkers and when deciding to use clinical features, to 

clarify research as considering “Alzheimer’s clinical syndrome” (ACS) rather than AD 

(Jack et al., 2018). To demonstrate the need for this distinction, Jack et al (2018, p.21) 

cite a specific example where an individual was incorrectly diagnosed with AD by 

several physicians but biomarkers later revealed a diagnosis of non-AD pathological 

changes. Further, Jack et al (2018) highlight the risk of conflating the pathology of 

general dementia co-morbidities with AD, citing a non-biomarker study which 

identified diabetes as a risk factor for AD which was later discovered  in an autopsy to 

be pathologically associated to vascular brain injury, a different dementia type. 

Therefore, when designing our study, we must make a measured decision to use either 

a symptom-based or biomarker-based definition of dementia. 

2.1.2.3 Defining dementia in our study 

Although our study is experimental, our results will contribute towards the field of 

clinical decision support for dementia progression prediction. This is fundamentally a 

clinical context where a physician faces practical and ethical constraints in using 

biomarkers. To be relevant in this context, our model should, therefore, be defined 

with the same limits. We must also avoid attempting to make precise sub-type 

diagnoses which, as mentioned in the previous section, can be pathologically 

conflated. Thus, in our study, we choose a clinical definition of “Dementia clinical 

syndrome”.  

2.1.3 Dementia risk factors 

In early stages of impairment, or even before impairment manifests, an understanding 

of risk factors allows clinicians to advise patients on potential lifestyle interventions 

to reduce risk or delay decline and may allow for early pharmaceutical intervention. 

Indeed,  drugs such as Donanemab have been found to delay early stage cognitive 

decline for AD suffers by reducing amyloid-beta buildup (Mintun et al., 2021).  

Assessing risk, however, is not straight-forward. There are many factors and every 

individual’s profile is complex and unique; Livingston et al, (2017) highlight a wide 

array of social, medical and lifestyle factors which contribute. Further, co-morbidities 

do not share the same relationships with all types of dementia at all stages. For 

example, Gerritsen et al (2016) found those suffering from young-onset AD were less 

likely than late-onset sufferers to have co-morbidities such as diabetes but were more 

likely to have diseases of the nervous system. Some have a more pronounced effect 

for specific genders, such as hearing loss for women (Fitzhugh and Pa, 2022), or have 
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complex interrelationships between genes and other risk factors (Yuan et al., 2022). 

Predicting overall risk, therefore, requires an ability to understand and account for the 

specific characteristics and relationships for an individual. Therefore, it is highly 

desirable to improve the clinical decision-making process for dementia risk and 

diagnosis. 

2.2 Predicting Dementia Progression with ML 

Given the challenging but valuable nature of forecasting risk, there has been an 

increasing effort to develop ML solutions over the last twenty years (Ansart et al., 

2021). Experimental systems have been developed using a range of statistical ML 

models and neural networks. In a survey of articles aiming to predict dementia or AD 

specifically, Kumar et al (2021) found Support Vector Machines SVMs to be the most 

popular technique, followed by neural networks of varying types, and about half 

considered only clinical data rather than clinical and imaging data.  Performance of 

models varies, particularly depending on the input feature sets and the specific 

definition of the classification task. 

Hypergraphs have been used to study AD risk, but not for clinical risk factors. Wang 

et al (2022), Zuo et al (2021), and Shao et al (2020) have used hypergraphs to model 

brain structure relationships in neuroimages, Shao et al (2021) examined the 

relationships between different genetic markers by comparing hypergraph 

constructions, Aviles-Rivero et al (2022) combined neuroimaging, age and genetic 

data into a multi-modal hypergraph and Zuo et al (2021) constructed multi-view 

hypergraphs from PET, MRI (Magnetic Resonance Imaging) and CSF (Cerebrospinal 

Fluid) data. These studies have shown promising improvements over existing 

techniques, but none consider the wider range of clinical risk factors and most depend 

on imaging as the only modality. Hypergraphs have been used in other domains for 

prediction tasks with large heterogenous datasets. For example, Li et al (2022) 

successfully created a hypergraph for node classification of student performance using 

behaviours – analogous to risk factors – as hyperedges. Furthermore, the model also 

provided useful information on which behaviours were most likely to increase student 

performance. Therefore, the use of hypergraphs for epidemiological analysis on 

clinical data is an exciting and potentially powerful tool meriting study. 

2.3 Hypergraph Neural Networks for Classification 

To overcome data correlation limitations of graph neural networks, Feng et al (2019) 

introduced the first hypergraph neural network framework using spectral convolution 

over a hypergraph on a Fourier basis. This model has since been built upon with 

notable advancements from Bai et al (2020) who developed an attention mechanism 

to learn a dynamic incidence matrix which allows for richer convolution by modelling 
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transition probability in parallel to convolution and Chien et al (2021) who generalised 

the propagation of vertex to edge and edge to vertex learning as special cases of two 

multi-set functions learned through a set transformer.  

In this  study, we use a model called Equivariant Hypergraph Neural Network (EHNN) 

(Kim et al., 2022) which advances the set transformer approach by modelling 

hypergraphs as a sequence of higher-order tensors representing fully expressive linear 

layers which share trainable parameters through hypernetworks. The adaptation of this 

model is discussed further in section 3.8. 

2.4 Explaining ML Model Predictions 

While the overall performance of a model is important, there are also significant socio-

technical challenges. Such systems must be both reliable and transparent for clinicians, 

giving them the most possible data to inform their decisions since a diagnosis of early 

onset dementia is not always clearly beneficial to patients (Dubois et al., 2015). The 

diagnosis itself can lead to anxiety, discrimination or stigmatization and incorrect 

diagnoses may lead to the prescription of unnecessary medication and treatments.  

However, deep learning models are often inherently black box; the complexity which 

allows them to solve difficult problems also makes their reasoning uninterpretable. 

Further, many AI systems are published without details of how they work or what data 

they were trained on, which prohibits introspection (Rajpurkar et al., 2022). For low-

stakes decisions this may be acceptable, but in a clinical setting this could lead to 

mistrust of model outputs, especially if they are unexpected (European Commission, 

2021). Moreover, this lack of transparency could hide an innovation discovered by the 

model which would ideally be uncovered and subject to further study (Rajpurkar et al., 

2022). The potential for systematic bias is also exacerbated by a lack of transparency. 

Simply training a model on a large dataset does not naturally result in fair outcomes 

(European Commission, 2021). To address these issues, we explore the use of an 

explainability module in addition to the base EHNN model. 

In graph learning, explainability methods can be grouped as factual or counterfactual, 

and post-hoc or self-interpretable (Kakkad et al., 2023). Factual methods identify 

nodes with the most influence over prediction while counter-factual methods learn by 

finding variations in the input graph which change the prediction. Post-hoc methods, 

as shown in Figure 3, attempt to explain the reasoning of a model after it has been 

trained. This has significant disadvantages: when developed separate to the model in 

question, the companion model can only provide an approximate explanation and  may 

be inaccurate, provide explanations that are not detailed enough or are themselves 

overly complex, and may show explanations which seem convincing for one specific 

output but which are in reality very similar for all other outputs (Hatherley, Sparrow 
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and Howard, 2022). Self-interpretable techniques, on the other hand, include a module 

which is trained alongside the underlying model to minimise a joint loss function. 

Explainability is embedded directly in the model’s architecture and so provides an 

authentic view of the model’s reasoning processes. Therefore, we select a self-

interpretable technique which employs both factual and counter-factual reasoning. 

 

 

 

There is an argument against explainability if it comes at the cost of performance, 

particularly in the medical domain where it poses an ethical dilemma of providing 

worse but more explainable results (Hatherley, Sparrow and Howard, 2022). We will 

evaluate this in our study by comparing results with and without explainability. 

Xu et al (2022) developed a self-explainability technique for hypergraph learning. 

They use a subset learner to dynamically select the most important nodes for edge 

classification by finding factual subsets which generate the same prediction as using 

the whole graph and counter-factual subsets which produce different predictions with 

the inverse set of nodes. This technique can be modified for use with any hypergraph 

neural network and will be employed in this study to achieve explainability. 

Dementia is a complex illness and pre-emptive diagnosis is a challenging task. As a 

result, prediction with ML is a growing field; however, there is a significant gap in the 

literature where an explainable hypergraph neural network’s capability to learn from 

higher order relationships may be used to improve prediction. We will address this gap 

by modifying the EHNN model with an explainability module and training it on a large 

set of clinical and genetic data. The details of this method will be set out in the 

following chapter. 
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Figure 3: Confidence and Explainability in ML Models. Self-explainability gives the highest 

confidence in decisions compared to post-hoc methods and complete black box methods. 
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Chapter 3  

Methodology 

This chapter explains how we will achieve our goals. We first phrase our objectives as 

research questions, then describe how a typical ML project pipeline addresses such 

questions. We use this context to frame them in a clinically relevant manner. Next, we 

select and explore the data in depth and end the chapter by explaining the technical 

details of the model and evaluation methods which we will employ in our experiments.  

3.1 Research Questions 

1. RQ1: Can a hypergraph neural network outperform existing methods for 

dementia progression prediction with clinical and genetic features? 

2. RQ2: Can we maintain dementia progression risk prediction performance with 

the hypergraph neural network when including a self-explainability module? 

3. RQ3: Can we assess the explainability-augmented hypergraph neural 

network’s limitations by examining the self-explainability module’s 

explanations for its dementia risk classification? 

3.2 Project Pipeline Overview 

A typical ML project framework includes: Framing the problem, preparing the data, 

choosing and training a model, evaluation, disseminating results, and deploying the 

model (Panesar, 2020). Figure 4 details the high-level steps we follow. First, we frame 

the classification goal based on a literature review of the problem space enabling us to 

set parameters within which we can select and process data, define our model and 

assess performance. Then we select, explore, and process a suitable data set. Finally, 

we choose a state-of-the-art hypergraph model, adapt it for experimentation, and 

analyse the results. As this is an experimental project, the model will not be deployed. 

 

 

Problem

Framing

Data

Selection
EDA

Data

Preprocessing

Model

Definition
Experiments Analysis Conclusions

Figure 4: ML Project Pipeline Overview. Our project process, a typical ML project. 
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3.3 Problem Framing 

To train a clinically relevant ML model, we need a precisely defined problem 

statement with two key components: classifying dementia status and measuring 

progression over a period of time. Unfortunately, these measures are often under 

considered in research, leading to discrepancies in findings and undermining 

reproducibility and validity (Marcos et al., 2006; Jack et al., 2018; Ansart et al., 2021). 

To avoid these pitfalls, we examine the clinical and research background to these 

definitions before selecting measure for this study.  

3.3.1 Classifying dementia conditions 

As discussed in section 2.1.2.3. we will use the “Clinical Dementia Syndrome” 

definition and so consider only clinical measures to select and classify individuals. 

Further, physicians generally need to determine progression risk for patients who have 

some early indication of dementia rather than for those who are cognitively normal 

(Ansart et al., 2021).  Applying these constraints contextualizes our model for clinical 

applications. Therefore, we look to existing clinical measures. 

Most datasets include measures for two standardized clinical cognition tests: CDR 

(Clinical Dementia Rating) and MMSE. MMSE has been shown to discriminate well 

between mild cognitive impairment and later stages of dementia while CDR can be 

used to more accurately differentiate normal cognition and early cognitive impairment 

(Perneczky et al., 2006). Therefore, we select CDR in this study as a more reliable 

early screening measure. 

CDR scores impairment on a five point scale across multiple categories1 from “none 

(CDR = 0)” to  “severe (CDR = 3)” (Burns and Levy, 1994, p.358). Scores are then 

weighted and averaged with the heaviest weight on the memory section. Each category 

is completed by a clinician through semi-structured interviews with the subject and a 

co-participant (Burns and Levy, 1994, p.358; NACC, 2015). The NACC dataset 

includes two summary scores: CDR-GS (global score) and CDR-SB (Sum of boxes). 

Perneczky et al (2006) found that CDR-GS has a higher pooled sensitivity and 

specificity (0.99 and 1) than CDR-SB (0.87 and 0.94) and caution against the use of 

CDR-SB as a screening tool. Further, post-mortem studies (Morris et al, 1991 in Burns 

and Levy, 1994, p.358; Saito and Murayama, 2007) found that a CDR score of 0.5 

(“questionable”) is a reliable indicator of neurophysiological deterioration consistent 

with, but not conclusive of, dementia which is not present in subjects with a CDR of 

 

1 The full table can be found in Appendix A 
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zero. A CDR-GS score of one demonstrates high probability of mild dementia and so 

can be considered as dementia progression. 

Therefore, this study considers a CDR-GS score of 0.5 as the most relevant early 

indicator of dementia risk available in datasets. We will use this to select participants 

for our study as a proxy for a clinical decision to apply early screening and consider a 

score of at least one to be equivalent to a clinical diagnosis of dementia progression. 

3.3.2 Measuring dementia progression over time 

We can consider progression as having three components: a starting condition, a 

progression condition, and a timeframe within which progression occurs. Having 

already defined the first two, we now consider the progression period. 

We first rule out attempting to predict time to progression as this approach risks bias 

towards those with a longer time under study and is not clinically relevant since it 

requires foreknowledge of dementia progression status (Ansart et al., 2021). It is, 

therefore, more clinically relevant, to consider only likelihood of progression over a 

set period. Ansart et al (2021) found through a meta-study that a minimum of three 

years is required between initial visit and prediction timeframe to achieve reliable 

results. In this study, we will experiment with prediction over periods from one to ten 

years and assess the impact of prediction period on performance. 

We can now define a specific, clinically relevant problem statement for our model:  

“Will an individual progress from a CDR-GS score of 0.5 to a 

score equal to or greater than 1 within a fixed time period?" 

Equipped with this precise question, we now select a dataset which gives us the 

greatest breadth of clinical information to train a model to answer it. 

3.4 Public Dataset Selection 

There are multiple available datasets with longitudinal data on individuals suffering or 

at risk of dementia. To maximize model performance, we consider the advantages and 

disadvantages of these datasets before selecting one. 

The ADNI (Alzheimer’s Disease Neuroimaging Initiative), OASIS (Open Access 

Series of Imaging Studies), UK Biobank and NACC (National Alzheimer’s 

Coordinating Center) datasets were considered for this research. Although the UK 

biobank has the largest number of participants (around half a million), it does not focus 

on dementia nor does it utilize a standardized cognition test (Fawns-Ritchie and Deary, 

2020) and so was ruled out as it cannot be used to reliably and consistently assess 
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cognitive function. The ADNI and OASIS datasets focus primarily on imaging and 

have smaller cohort sizes of around one to two thousand participants total. The NACC 

dataset has a participant set of over 33,000 with at least a one-year period recorded. It 

also includes multiple, low-cost, and non-invasive features for most participants. 

We therefore select the NACC dataset and consider NACC participants as eligible for 

each prediction period if they have the requisite number of visits after being assessed 

as having a CDR-GS of 0.5. With a chosen dataset, we now examine this data for 

biases, imbalance and anomalies in an EDA (Exploratory Data Analysis) task. 

3.5 Exploratory Data Analysis 

Exploratory Data Analysis is defined by (MacInnes, 2020, p.2) as: 

“an approach to statistics that stresses the importance of the 

researcher having a good knowledge of how their data were 

produced, of carefully studying and visualizing the data in order to 

understand its structure” 

It allows us to gain an initial understanding of the NACC data, surface relationships, 

errors or biases and informs data remediation (Chandramouli, Dutt and Das, 2018). 

We will perform EDA in a broad context by studying patterns across different cohorts 

distinguished by length of participation before diving deeper into specific features of 

a single period cohort. Data has been visualized with the matlibplot Python package.  

3.5.1 Trends in participation-length cohorts 

NACC subjects undertake examinations on a yearly basis. These time periods can be 

used to group participants into participation-length cohorts and observe dementia 

progression within those groups.   

New participants regularly enter the NACC program, so there is a wide range of total 

visit numbers. To understand trade-offs between total sample size and prediction 

period, we plot the number of participants by the cumulative number of visits in Figure 

5. We observe a steady decrease in size as years of participation increase, which is 

unsurprising as new participants enter and existing participants are lost to attrition or 

death. This shows us that as we increase the prediction period, we must learn from a 

smaller input set.  

We next examine progression rates by cohort in Figure 6. Progression rate increases 

to a peak at 6 years and then gradually declines, possibly due to a survivor bias over 

longer periods. Since we are classifying progression and it is not a fifty-fifty split in 

any cohort, this shows that the data is imbalanced. This is a typical problem in medical 
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ML due to the nature of diagnosing conditions within an otherwise healthy population 

and can bias the model if it learns to minimise loss by focusing on the majority class  

(Fernández et al., 2018; Basit et al., 2022). Therefore, we can infer that training a 

model on the shorter and longer participation cohorts may result in poor performance.  

Since dementia is primarily a disease affecting later life, age differences between 

cohorts may introduce biases. To anticipate this, we examine age distribution at the 

initial visit for each cohort in Figure 7. All cohorts have a similar distribution with an 

interquartile age range between 65 and 80; most subjects have an advanced age on 

their first visit. The slight decrease in age over participation length is potentially a sign 

of attrition or survivor bias. We also note that all cohorts have age outliers, particularly 

in shorter participation length cohorts which may adversely affect model performance 

by obfuscating more general trends (Joshi, 2023, p.84). 

By examining macro trends across different length-of-participation cohorts, we have 

identified three important considerations for data pre-processing and model 

assessment. First, there is a trade-off between length of prediction period and the total 

available data to train a model. Second, shorter and longer participation-length cohorts 

have the greatest class imbalances, likely worsening performance. Third, the data has 

age outliers which should be removed. 

 

 

Figure 5: NACC Cohort Size by Length of Participation. Shows cumulative number of 

participants with at least x years of NACC visits without any filtering for missing data. As 

length of participation increases, cohort size decreases. 
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Figure 6: CDR Score Progression by Length of Participation. Shows the percentage of 

participants in each cohort who progressed to a dementia classification. There is a steady 

increase up to 6 years followed by a decrease. The increase is expected as participant age 

increases, the decrease may be explained by a survivor bias. 

Figure 7: Initial Age Distribution by Length of Participation. A box and whisker plot of age 

on first visit for each cohort. There is a slight gradual decrease in median initial age as length 

of participation increases which is an expected consequence of attrition and survivor bias. 
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3.5.2 Missing Values 

The NACC dataset is imperfect and contains many missing values for subjects which 

must be resolved in data pre-processing. To understand the extent of the problem, we 

remove features which were missing for more than 20% of participants and then 

visualise the percentage of participants with at least one missing data point for any of 

the remaining features in Figure 8. 

It is immediately obvious that all cohorts suffer from significant missing data, even 

after filtering out features with the highest missing data rates. This may be the result 

of some features with an abnormally high percentage of missing data. The NACC 

backfills some fields in later visits which may explain the initial decrease. The increase 

may be a result of changes in data collection over time where new features are 

introduced for collection on initial or early visits and are therefore absent for longer 

participating subjects. Missing data is clearly a problem which will need to be 

addressed in data pre-processing. 

 

 

Figure 8: Percentage of Missing Data by Length of Participation. Shows the percentage of 
participants who have at least one missing data value for the features under consideration. 

Trends down sharply to the 7 year cohort before gradually increasing. Some NACC values 

such as demographics may be backfilled from subsequent visits, explaining the decrease. The 

later increase may be due to changes in data collection methods over time. 
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3.5.3 Three-year Cohort Feature Analysis 

We now take a deeper dive into one cohort to gain understanding into feature patterns 

for medications, demographics, and some known risk factors. We emphasise that we 

are gaining only an illustrative insight into one cohort as it would not be feasible to 

explore all cohorts or features in depth, Nevertheless, identifying issues will help us to 

critically assess the data as a whole. We chose to assess the three-year cohort since it 

meets Ansart et al’s (2021) minimum period criteria while maintain a balance between 

total sample size and progression rate. 

3.5.3.1 Data representation of medications 

Both categorical features, such as gender, and binary features, such as whether a 

medication is being taken or not, may be subject to poor frequency in data. For some 

binary data, the feature could be particularly uncommon, such as a treatment for a rare 

disease. These features may be useful for training our model on niche effects, but their 

effect may be difficult to validate due to a lack of statistical significance. 

To understand if this is a potential issue for our data, in Figure 9 we visualise the 

percentage of participants in this cohort taking a medication type. 

 

 

Figure 9: Percentage of Participants Taking Each Medication. Shows the percentage of 

participants taking each medication group represented by a binary feature in the 3-year cohort 

dataset. Around half of the medications have representation above 10% but the other 

medications have poor representation making inference challenging. 
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We observe that slightly more than half of the medications are being taken by at least 

10% of study participants. Antihypertensive blood pressure medication is well 

represented whereas other medications of interest such as oestrogen hormone therapy 

and diabetes medication are poorly represented. We must exercise caution in 

interpreting results for poorly represented features; for example, since the impact of 

oestrogen hormone therapy on dementia risk is currently inconclusive (Livingston et 

al., 2017; Rubinstein et al., 2021; Ali et al., 2023), and only 0.46% of this cohort have 

this feature, any related findings are unlikely to be statistically significant. 

Examining the distribution of medication across this cohort has shown that many 

features are imbalanced which may impact the model’s ability to learn from them.  

3.5.3.2 Biases in demographic features present in the data 

We next assess the cohort for bias within the total dataset and patterns of progression 

by examining three demographic features: gender, race, and education. Relevant 

diagrams can be found in Appendix B. We observe biases in all three. 

More women (34.3%) progress to dementia than men (33.4%) in this cohort, which 

agrees with our understanding that women are at a higher risk of dementia as they age 

(Ali et al., 2023). However, women represent only 48.1% of the overall data, creating 

a bias to male participants. 

The data is heavily biased to White participants (85.8%) and, discounting severely 

underrepresented races, the progressed group is also proportionally biased towards 

White, and to a lesser extent Asian, participants who show 13.2 and 8.9 greater 

percentage point progression rates, respectively, than the next highest group. These 

disparities do not agree with known differences in race-related risks; Black or African 

American individuals are twice as likely as White Americans to develop dementia 

(Mayeda et al., 2016). 

The dataset also contains a very high proportion of highly educated individuals with 

35.4% attaining a doctorate level education and a very low proportion of subjects 

educated up to high school level (4.5%). This is likely a selection bias issue with 

NACC participants. We see that progression does decline as education increases apart 

from the “up to high school” group which is probably due to poor representation.  

By examining demographic patterns in the 3-year cohort, we have seen that it is biased 

towards White, highly educated, and male subjects. Although we have not performed 

the same analysis on all cohorts, it is likely that similar issues will exist since all 

participants are recruited through the same processes. We state explicitly that any 

model trained on this data will suffer from bias and not be fit for use in a general 

clinical setting. Developing improved datasets is an important goal for future studies. 
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3.5.3.3 Patterns in risk factors present in the data 

In this final EDA section, we will explore two features, Beta Blocker use and APOE4 

allele count, which represent known dementia risk factors to assess if the data follows 

established patterns of dementia progression and what that may mean for our model. 

Relevant diagrams are provided in Appendix C. 

Progression rate was 3.5 percentage points lower in the participant group who take 

Beta Blockers in this data set. This agrees with literature which posits that Beta 

Blocker use reduces the risk of AD by enhancing CSF flow to clear amyloid-beta and 

tau build-up (Beaman et al., 2022). 

The presence of one APOE4 allele increases likelihood of progression in this cohort 

by over fifty percent, and presence of two alleles by one hundred percent, compared 

to none. Again, we see a clear agreement with the literature that an increase in e4 allele 

count significantly increases the likelihood of dementia progression (Livingston et al., 

2017). We note, however, that those with only two alleles represent less than nine 

percent of the cohort and so this risk may be under considered as a model learns. 

3.5.4 Summary of EDA findings 

At a cohort level, EDA has revealed trade-offs between prediction period and sample 

size, and that the data exhibits class imbalances, age outliers and significant missing 

data issues. At a lower level, we have observed gender, racial and educational biases 

in this cohort as well as disparity in feature representation such as co-morbidities and 

APOE4 allele count. We can assume that similar disparities are likely in other cohorts.  

These findings show that we should deal with missing data and outliers in our data 

pre-processing and model design and that the training data prevents the model from 

being clinically deployable due to severe biases. 

3.6 Imbalanced Data Remediation 

Classifiers trained on imbalanced data tend to have higher accuracy for majority 

classes, leading to a higher risk of false negatives for even small imbalances 

(Mazurowski et al., 2008; Fernández et al., 2018). Fernández et al (2018) describe 

three main strategies for mitigating data imbalance relevant to neural networks: over 

or under sampling of data, cost-sensitive learning and ensemble learning.  

The key drawback to sampling is the introduction of noise. Our model learns from 

higher order relationships between patients, so removing majority cases would remove 

valuable data about protective relationships while duplicating minority cases could 
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lead to false inference from artificially overrepresented relationships. Indeed, Hassanet 

et al (2022) studied over seventy sampling methods and found that even the best 

performing techniques introduced significant errors. Therefore, given the dependence 

on higher order relationships, we will not use sampling. 

Cost-sensitive learning is the use of a non-standard loss function in a neural network 

which penalizes misclassification of one class more strongly than another (Fernández 

et al., 2018). Adding a misclassification cost to our model for minority (positive) cases 

not only helps to improve accuracy by mitigating the data imbalance but also reduces 

the risk of classifying false negatives. Cost-sensitive learning is, therefore, a suitable 

technique for our model to mitigate data imbalance. 

Ensemble learning is the use of multiple classifying models whose results are in some 

way combined to make a final classification decision (Fernández et al., 2018) and have 

been found effective in graph learning (Goyal et al., 2019). The underlying principle 

is that every model has some underlying error which can be smoothed when the results 

of different models are combined. To be successful, an ensemble must be composed 

of models which produce different errors. In our model design, the addition of the 

explainability module leverages ensemble learning since the models are trained 

together using combined loss functions but produce different errors. 

Therefore, to preserve natural higher order relationships for model learning, we will 

remediate the imbalanced data in model design, rather than data pre-processing. 

3.7 Data Pre-processing 

We must ensure that the input data for our model is both appropriately structured and, 

to the best possible extent, without defects. We will discuss remediation of missing 

values, features selection, and data transformation for a hypergraph neural network. 

3.7.1 Feature Selection and Missing Data 

The next challenge is to select features from the total dataset provided by the NACC 

and to deal with missing data. The raw dataset contains 792 data columns and a row 

for each participant visit. A breakdown of each section can be found in Appendix D. 

The data is grouped into sections such as administrative data, medical history, and 

clinician diagnoses. 

Since we are only using clinical and genetic features, we first remove administrative 

and biomarker fields, reducing the total to just over six hundred features. We then 

remove features which have derived equivalents. For example, although specific 

medications are provided as individual features, these have been collated into summary 
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columns by their primary effect, e.g. the use of antidepressants by a subject. Wherever 

a clinician diagnosis is provided alongside a patient reported condition, the clinician 

diagnosis is chosen. Some fields, such as the presence of certain inherited mutations, 

combine ‘not present’ and ‘unknown’ into the same field value and so cannot be 

reliably represented and are, therefore, removed. After this process, 189 clinical and 

genetic features remain, but many subjects still have missing values. 

To deal with this missing data without sampling we must remove participants or data 

columns with missing values. Removing all participants with missing data results in 

3,076 remaining participants. To increase the sample size, we find a balance between 

removing participant data and removing feature columns with missing data. We find a 

sweet spot for retaining features while minimizing the number of subjects to remove 

by keeping features where no more than 20% of participants had a missing value. 

Through this process we increase the sample size to 4,755 subjects with 138 features. 

We will conduct experiments using both datasets to analyse the trade-off between 

feature numbers and sample size. 

3.7.2 Feature Engineering for the Hypergraph and Data Splits 

Hypergraphs can be generated from any data that can be expressed as a relationship 

between entities. Hypergraph structure is essentially the result of hyperedge generation 

which may be performed explicitly where underlying data has an inherent and relevant 

structure to the learning task, or implicitly where it does not (Gao et al., 2022). Most 

features in the NACC dataset are categorical and can be modelled in a hypergraph as 

categories with one-hot encoding. Others, such as age and education level represent 

ordinal numbers – each value could be one-hot encoded, but this may lead to excessive 

granularity in the data which would inhibit the model from discovering higher level 

patterns. In these cases, edges were created by bucketing values into bins. For example, 

years of education was transformed into one-hot encoded education level hyperedges 

based on guidelines provided by the NACC.  

Finally, the data was separated into random training, validation, and test sets with equal 

proportions of classes in each set. Given the relatively large number of samples, we 

are able to have relatively large test and validation groups and so chose a 60/20/20 

split, respectively. 

3.8 Model Design and Evaluation 

To realise an explainable HGNN for dementia prediction, we use EHNN, a cutting-

edge hypergraph neural network architecture created by Kim et al (2022) and augment 

it with an interpretable subset learning module as defined by Xu et al (2022). In this 
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section, we give an overview of these methods and how we have combined them. For 

an in-depth understanding, we direct the reader to the respective articles. 

3.8.1 Equivariant Hypergraph Neural Network Transformer 

At the foundation of EHNN is the novel idea to decompose undirected hypergraphs as 

a sequence of tensors; since a uniform hypergraph can be represented as a symmetric 

higher-order tensor, each k-order hypergraph can then be represented by a 

permutation-invariant higher-order tensor 𝐴𝑘 (Kim et al., 2022).  

Crucially, this allows the problem of creating a neural network to learn from 

hypergraph data to be reduced to finding a function 𝑓 which is invariant and 

equivariant under node permutations and operates on a sequence of tensors. A neural 

network can thus be constructed from a sequence of equivariant linear layers as 

characterized by Maron et al (2019; cited by Kim et al., 2022). These layers identify 

equivalence classes which partition multi-index space, dictating the weight and bias 

parameters of the layer and are defined in equation 1 (Kim et al., 2022): 

𝐿(𝑘)→(𝑙)(𝐀(𝑘))
𝐣

=  1|𝐣|=𝑙 ( ∑ ∑ 1|𝐢 ∩𝐣|=ℐ

𝐢

𝐀𝐢
(𝑘)

𝑤ℐ

min (𝑘,𝑙)

ℐ=1

+ ∑ 𝐀𝐢
(𝑘)

𝑤0 + 𝑏𝑙

𝐢

) (1) 

Where 𝑤0, 𝑤ℐ , 𝑏𝑙 are weight and bias. By using pairwise linear layers between input 

and output tensor sequences, equivariant linear layers for hypergraphs can then be 

composed as in equation 2 (Kim et al., 2022): 

𝐿(:𝐾)→(:𝐿)(𝐀(:𝐾)) =  (∑ 𝐿(𝑘)→(𝑙)

𝑘≤𝐾

(𝐀(𝑘)))

𝑙≤𝐿

 (2) 

These layers, however, cannot yet be used in a practical model since they cannot take 

hypergraphs with orders exceeding (𝐾, 𝐿) and result in the number of parameters 

growing at least linearly with (𝐾, 𝐿) (Kim et al., 2022). To overcome this, Kim et al, 

(2022) introduce hypernetworks as a means to share trainable parameters within layers 

and define EHNN layers as in equation 3: 

EHNN(𝐀(:𝐾))
𝑙,𝐣

=  1|𝐣|=𝑙 ∑ ∑ ∑ 1|𝐢 ∩𝐣|=ℐ

𝐢

𝐀𝐢
(𝑘)

𝒲(𝑘, 𝑙, ℐ)

min(𝑘,𝑙)

ℐ=1

 

𝑘≤𝐾

 

                             + 1|𝐣|=𝑙 ∑  

𝑘≤𝐾

∑ 𝐀𝐢
(𝑘)

𝑊(𝑘, 𝑙, 0)  + 1
|𝐣|=𝑙

𝐢

ℬ(𝑙) 

(3) 
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Where 𝒲(𝑘, 𝑙, ℐ), ℬ(𝑙) are hypernetworks inferring weights and biases. EHNN can 

then be realized with an attention transformer, introducing sophisticated sum pooling 

as in equation 4 (Kim et al., 2022):  

Attn(𝐀(:𝐾))
𝑙,𝐣

=  𝜙3 (𝑙, ∑ 𝜙2 (ℐ, ∑ ∑ ∑ 𝛼𝐢,𝐣
ℎ,ℐ𝜙1(𝑘, 𝐀𝐢

(𝑘)
)𝑤ℎ

𝑉

𝐢𝑘≥𝐾

𝐻

ℎ=1

 )

ℐ≥0

) (4) 

with 𝜙1:3 as Multi-Layer Perceptron (MLP) universal approximators modelling the 

decomposition of the hyper-network 𝑊(𝑘,𝑙 ℐ), a trick which eliminates the need to store 

weights for each triplet, and 𝛼𝒊,𝒋
ℎ,𝐼

 denoting attention coefficients calculated though 

scaled dot-product attention on query and key hyper-networks. The EHNN-

Transformer is then given as equation 5 (Kim et al., 2022):  

EHNN-Transformer(𝐀(:𝐾)) =   Attn(𝐀(:𝐾)) + MLP(𝐀(:𝐾)) (5) 

We train the EHNN-Transformer using a binary cross-entropy loss function. To 

implement cost-sensitive learning, we rescale weights according to the data imbalance, 

increasing the weight for the minority group. 

3.8.2 Interpretable Subset Learner Module 

To explain the factual and counterfactual reasoning of the EHNN-Transformer, we 

define a module which aims to learn the subset of important edges for each node, which 

is defined as 𝒢′ where 𝒢 is the original hypergraph. Following Xu et al, (2022) 𝒢′ 
should exhibit sufficiency and necessity such that prediction with 𝒢′ should be 

consistent through factual reasoning and predictions with 𝒢\𝒢′ should yield opposite 

predictions through counterfactual reasoning. 

To find 𝒢′ we assign a random variable from the Bernoulli distribution 

𝑝𝑣,𝑒 ~ 𝐵𝑒𝑟𝑛(𝑤𝑣,𝑒) where edge e is preserved for node v if 𝑝𝑣,𝑒 > 0.5 (Xu et al., 2022). 

The subset learner is constructed as a 2-layer MLP (𝑔𝜃) to parametrize the probability 

weight (𝑤𝑣,𝑒). To train the MLP, the Gumbel-max trick is used to differentiate 𝑝𝑣,𝑒 

from the forward pass weights 𝑤𝑣,𝑒 of the MLP (Xu et al., 2022). This then yields the 

predictions for factual and counterfactual reasoning for each node as in equation 6 (Xu 

et al., 2022): 

𝑦̂𝑓 = 𝑓𝜃(𝒢′); 𝑦̂𝑐𝑓 = 𝑓𝜃(𝒢\𝒢′) (6) 

Where 𝑓𝜃 denotes the base model, in our case the EHNN-Transformer. 

The factual loss can then be defined as in equation 7 (Xu et al., 2022): 
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ℓ𝑓 =  {
      [𝛾 + 𝑦̂𝑣 − 𝑦̂𝑓]

+
,   𝑖𝑓 𝑦𝑣 =   1;

[𝛾 + 𝑦̂𝑓 − 𝑦̂𝑣]
+

, 𝑒𝑙𝑠𝑒.
 (7) 

and the counterfactual loss as in equation 8 (Xu et al., 2022): 

ℓ𝑐𝑓 =  {
      [𝛾 + 𝑦̂𝑐𝑓 − 𝑦̂𝑣]

+
,   𝑖𝑓 𝑦𝑣 =   1;

[𝛾 + 𝑦̂𝑣 − 𝑦̂𝑐𝑓]
+

, 𝑒𝑙𝑠𝑒.
 (8) 

Where [𝑥]+ is the maximum of 𝑥 and 0 and γ is the predefined threshold 0.5. To force 

𝑔𝜃 to learn concise subsets, a regularization term on the weight 𝑤𝑣,𝑒 is added, giving 

the loss function in equation 9 (Xu et al., 2022): 

ℒ𝑔 =  𝔼𝑣~𝑝(𝒱𝑒)𝔼𝑒~𝑝(𝜀)[𝛼ℓ𝑓 + (1 − 𝛼)ℓ𝑐𝑓 + 𝜆𝑣𝑤𝑣,𝑒] (9) 

where 𝛼 and 𝜆𝑣 are tunable hyperparameters controlling the balance of factual and 

counterfactual learning and the strength of regularization, respectively. 

3.8.3 Composite Model 

We then define a composite model which modifies the binary cross-entropy loss of 𝑓𝜃 

to include factual and counterfactual loss as:  

ℒ𝑓 =  𝔼𝑣~𝑝(𝒱𝑒){𝐵𝐶𝐸𝐿𝑜𝑠𝑠 ∗ +𝜆𝑚𝔼𝑒~𝑝(𝜀) [𝛼ℓ𝑓 + (1 − 𝛼)ℓ𝑐𝑓]} (10) 

where 𝐵𝐶𝐸𝐿𝑜𝑠𝑠 ∗ is binary cross-entropy loss modified with cost-sensitive learning 

scaled to the difference between majority and minority classes and 𝜆𝑚 is a tunable 

hyperparameter which influences the strength of the factual and counterfactual loss 

over the base model’s loss. Following Xu et al (2022), we use alternate gradient 

descent to train 𝑓𝜃 and 𝑔𝜃 and train 𝑓𝜃 with ten warmup epochs in order to improve 

stability. In each subsequent epoch, we first fix 𝑓𝜃 to extract the node prediction logits 

and use these to generate factual and counterfactual subsets 𝒢 and 𝒢\𝒢′. Then, we 

calculate factual and counterfactual predictions by evaluating the model with an 

augmented incidence matrix by preserving only the edge-node relationships in the 

factual and counterfactual subsets, respectively. These predictions are used to calculate 

the loss in equation 9 and train 𝑔𝜃. Next, we train  𝑓𝜃 fixing 𝑔𝜃 with the loss defined 

in equation 10. This cycle is repeated for each epoch to train the composite model. 

This process is summarised in Figure 10. 
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3.8.4 Model Evaluation Methods 

To assess the model’s performance, we need to choose a method to judge its ability to 

classify dementia progression correctly. Accuracy is perhaps the easiest to understand 

but tells us nothing about how the model is performing for different cases which can 

be misleading with imbalanced datasets. For example, if the data has only 20% of a 

positive class, by categorising all data as negative, the model can achieve an accuracy 

of 80% (Fernández et al., 2018). Clinicians may be more interested in the model’s 

ability to correctly predict true positive cases or in having a low number of false 

positives, for example when the outcome of a positive result may be invasive follow-

ups (Dubois et al., 2015). In this study we choose the 𝐹1 score as the primary metric 

of model performance, the 𝐹1 score is defined by Fernàndez et al (2018, p.52) as  

“a weighed harmonic mean between positive predictive value and 

true positive rate, also known as precision and recall, respectively, 

... Precision evaluates the fraction of correct classified instances 

among the ones classified as positive, while recall is the fraction of 

total positive instances correctly classified as positive” 

Figure 10: Overview of the Composite EHNN and Subset Learner Model. Adapted from Xu 

et al (2022). Predictions and explainable subsets are learned in alternate training cycles from 

the node and edge embeddings of the EHNN and factual and counter-factual predictions.   
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The 𝐹1 score thus gives us a balanced understanding of the model’s skill in identifying 

positive cases without over-classifying as positive. We will also consider two 

additional metrics: Area Under the Receiver Operating Characteristic Curve (𝐴𝑈𝐶𝑅𝑂𝐶) 

and Area Under the Precision-Recall Curve (𝐴𝑈𝐶𝑃𝑅). The ROC curve is a plot of false 

positive rate against true positive rate and the PR curve is a plot of precision and recall, 

the curves show these values across all classification thresholds (Davis and Goadrich, 

2006). Measuring 𝐴𝑈𝐶𝑅𝑂𝐶 gives us an understanding of the model’s ability to 

distinguish positive and negative classes whereas 𝐴𝑈𝐶𝑃𝑅  shows the trade-off between 

precision and recall. 𝐴𝑈𝐶𝑅𝑂𝐶 is a popular method that is widely reported and allows 

us to compare against existing studies. However, in the same way as accuracy, the 

𝐴𝑈𝐶𝑅𝑂𝐶 can be misleading when the dataset is imbalanced (Fernández et al., 2018, 

p.54). Therefore, we also report the 𝐴𝑈𝐶𝑃𝑅  as support and visualisation for the model’s 

performance in classifying positive cases without excessive false positives or 

negatives. 

Together, with these scores we can assess the model’s capabilities in contexts which 

may be desirable in different clinical contexts: overall ability to predict positive 

dementia progression cases (𝐹1 score), ability to correctly distinguishing between 

positive and negative cases (𝐴𝑈𝐶𝑅𝑂𝐶), and ability to predict progression while 

minimising false negatives (𝐴𝑈𝐶𝑃𝑅). 

3.8.5 Deterministic Results and Reproducibility 

ML models often contain various sources of randomness resulting in non-deterministic 

results.  Zhuang et al (2021) list initialization, data augmentation, data shuffling and 

stochastic layers as main sources of noise. Non-determinism creates two key problems: 

results are not reproducible and hyper-parameter or data variations cannot be fairly 

compared. To overcome these, we seed all random number generators used in the code 

and use PyTorch’s deterministic flag to avoid randomness in GPU operations.  

In this section we set out a specific and clinically relevant problem for our model, 

chose, analysed and processed the NACC dataset and defined the hypergraph neural 

network design. Further, we explained how we will assess the performance of our 

model with different measures which provide a variety of meaningful interpretations 

for clinicians and how we will make our results reproducible. We now use this model 

and data to conduct a series of experiment to answer our research questions. 
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Chapter 4  

Experiments, Results and Analysis 

Having explored the underlying data and defined our models, we now set out our 

contributions through experiments. We start by creating a performance baseline with 

only the EHNN model, answering our first research question. We then build on these 

with the subset learner and analyse its outputs to answer the second and third research 

questions. All experiments were conducted on an NVIDEA V100 GPU. 

4.1 Contribution 1: Hypergraph neural networks can 

outperform existing methods for dementia progression 

prediction with clinical and genetic features (RQ1). 

We find that the EHNN model achieves an 𝐹1 score of 0.73, 𝐴𝑈𝐶𝑅𝑂𝐶 of 0.86, 𝐴𝑈𝐶𝑃𝑅  

of 0.75 against a baseline of 0.34 and 79% accuracy, which outperforms non-

hypergraph models in two similar studies. This section details the experiments leading 

to these results and their comparison to existing studies. 

4.1.1 Grid search experiments 

To approximate the best hyper-parameters, we first conduct a grid search varying 

hyper-parameter values: learning rate (LR), weight decay (WD), number of self-

attention heads (SAHs), hyper-network dropout rate (HDO) and hidden layer channels 

(HLCs). As it would not be computationally feasible to conduct an exhaustive search 

across all cohorts, we search on the three-year cohort with the feature subset set 

selected for low number of missing values, as a trade-off between a larger number of 

progressed subjects and total sample size, over 500 epochs. A full table of results for 

both LRs is provided in Appendix E. 

Although we see a better 𝐹1 score with the lower LR, when we examine loss curves 

for the best result with each LR we find that the model overfits with the higher rate, 

supported by the observation that convergence is much faster when LR is lower. These 

loss curves can also be found in Appendix E. Thus, we select hyper-parameters of a 

LR of 0.001, 0 WD, 4 SAHs, 0,1 DO and 256 HLCs, achieving an 𝐹1 score of 0.73. 

We next use these hyper-parameters to search for the best prediction period and feature 

set. 
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4.1.2 Optimal prediction period experiments 

We now use the best performing hyper-parameters to search for the period which 

yields the highest performance. Since convergence occurs early with these hyper-

parameters, we do not search beyond 200 epochs. Table 1 shows the best performing 

period for each feature set. The filtered feature set, trading-off between number of 

subjects and number of features, performed best over a three-year period. All best 

performing periods have at least a three-year duration, agreeing with Ansart et al’s 

(2021) finding that this is the minimum necessary period. For all other feature sets, we 

found the best time range in the five- or six-year periods, suggesting that with lower 

cohort sizes, a longer period is needed to observe the impact of these features. See 

Appendix E for a visualisation of each period and feature set. 

These results suggest that most features play a role in the prediction, since the best 

performing model was trained with data from all the subsets, but also that total sample 

size is more important than total number of features. We also see overfitting in later 

time periods with smaller cohort sizes. We caveat these results on having used a set of 

hyper-parameters that we know to be approximately optimal for the 3-year dataset. 

Feature Set Year 𝑽𝑭𝟏 𝑻𝑭𝟏 Epoch 

All selected features 5 0.72 0.71 70 

All selected features (filtered to low missing values) 3 0.73 0.73 93 

CDR sub-scores 5 0.69 0.68 85 

Co-morbidities 6 0.58 0.57 61 

Dependence related features 5 0.66 0.63 60 

Family dementia and genetic features 6 0.60 0.56 58 

Medications 6 0.58 0.56 60 

 

 

4.1.3 Feature ablation experiments 

Next, we examine performance differences when removing features from the filtered 

three-year dataset. Features are grouped as relating to family dementia and genetics, 

co-morbidities, demographics, CDR sub-scores, social isolation, health habits, 

behaviour and cognition characteristics, medications, dependence, and depression.  

Table 2 shows the results of the feature ablation experiments on the 3-year period. We 

see that removing health habit features improves the validation set score but is not 

Table 1: Best Time Period Result for each Feature Set. We see the best result in the 3-year 

time for the filtered feature set, suggesting that a sample size is more important than total 

features. The good performance of only CDR scores suggest these are powerful predictors. 
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supported by the test set score. For other results, we see a worse validation score and 

overfitting. Interestingly, we don’t see a significant drop in performance when 

removing the CDR sub-scores, despite observing good model performance when using 

only them. Therefore, this supports the finding in the previous section that all feature 

sets contribute to model performance. This also suggests that when removing some 

features, the model is able to compensate. 

Ablated Features 𝑽𝑭𝟏 𝑻𝑭𝟏 Epoch 

Family dementia and genetic features 0.70 0.71 101 

Co-morbidities 0.69 0.71 74 

Demographics 0.7 0.68 46 

CDR sub-scores 0.70 0.70 88 

Social isolation 0.69 0.70 99 

Health habits 0.73 0.71 71 

Behaviour and cognition characteristics 0.70 0.70 97 

Medications 0.73 0.70 152 

Dependence 0.72 0.69 77 

Depression 0.72 0.70 139 

 

 

In a task to predict dementia prediction over a three-year period, EHNN achieves an 

𝐴𝑈𝐶𝑅𝑂𝐶 of 0.86 with an LR of 0.001 no WD, 4 SAHs, 0.1 DO and 256 HLCs. This 

outperforms two similar studies from Lin et al, (2018) who report a best 𝐴𝑈𝐶𝑅𝑂𝐶  of 

0.75 and Pang et al, who achieve an 𝐴𝑈𝐶𝑅𝑂𝐶  of 0.85. Our results and these studies are 

compared in more detail in section 4.4. We achieved this result by performing a wide 

search across a feature sets and time periods to find the optimal tradeoff between 

sample size, prediction period and feature sets. 

In the following section, we will include a self-explainability module and assess 

whether or not it is possible to maintain the same performance. 

  

Table 2: Feature Ablation Results. Shows validation and test set 𝐹1 scores for the filtered 

three-year dataset with feature subsets removed. Although ablating some subsets, e.g. Health 

habits, increased performance in the validation set, we see overfitting as test set results do not 

support them. Removing any subset – and in particular CDR scores – does not significantly 

reduce performance. This suggests that all feature sets contribute to model performance. 
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4.2 Contribution 2: We can maintain dementia 

progression risk prediction performance with the 

hypergraph neural network when including a self-

explainability module. (RQ2). 

We find that we can maintain or improve model performance when implementing a 

self-explainability module. We achieve an equal 𝐹1 score of 0.73 and slightly higher 

𝐴𝑈𝐶𝑅𝑂𝐶 and 𝐴𝑈𝐶𝑃𝑅  scores of 0.87, of 0.76 respectively, compared to 0.86 and 0.75 

for the EHNN only model. This section details how these scores were achieved. 

To approximate the best performing composite model, we perform hyper-parameter 

tuning specific to the explainability module and then select the best performing 

parameters and compare the performance with the base model.  

4.2.1 Lambda tuning experiments 

The subset module and EHNN model lambda values work together to influence both 

the total size of the factual subset and its influence on the model’s learning. Table 3 

shows results of adjusting only the EHNN 𝜆𝑚 hyper-parameter while keeping others 

fixed. We find the best value to be 0.1. When the value is too low, the model fails to 

incorporate the factual and counterfactual loss into its learning, and when the value is 

too high, the model is influenced too much by this loss in earlier epochs. 

 

The subset learner lambda value determines regularization strength for the generated 

subset: higher values will lead to smaller subsets and vice versa. It’s desirable for this 

impact to be high in early training epochs, allowing the model to quickly discard 

irrelevant information; however, if left constant, it will lose too much relevant 

information. To avoid this, we first set an initially high value which encourages stricter 

EHNN 𝝀𝒎 𝑽𝑭𝟏 𝑻𝑭𝟏 𝑨𝑼𝑪𝑹𝑶𝑪 𝑨𝑼𝑪𝑷𝑹 

10 0.71 0.73 0.86 0.74 

1.5 0.72 0.73 0.86 0.74 

1 0.72 0.71 0.86 0.75 

0.5 0.73 0.74 0.86 0.75 

0.1 0.73 0.74 0.86 0.76 

0.01 0.72 0.71 0.86 0.74 

Table 3: EHNN Lambda Tuning. Shows performance with different values for EHNN model 
lambda. Subset learner lambda decay rate and alpha are fixed. We see the best performance 

across all metrics with a value of 0.1. If the value is too high, the effect on model learning is 

too much, and if it is too low, too little. 
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subsets then decay this value rapidly. Results of this tuning are displayed in Table 4. 

This process revealed that an initial subset learner lambda value of 1E−8  with a decay 

of 14% per epoch achieved the best results and slightly outperforms the EHNN model 

on 𝐴𝑈𝐶𝑅𝑂𝐶  and 𝐴𝑈𝐶𝑃𝑅  by 0.01. 

 

 

4.2.2 Alpha tuning experiments 

The alpha value determines the weight balance of factual and counterfactual loss in 

model learning (Xu et al., 2022); a higher alpha value places more weight on factual 

reasoning and less on counter-factual reasoning. Table 5 shows that an equal balance 

of factual and counter-factual learning yields the best results.  

 

 

These experiments have shown that including a self-explainability module not only 

maintains but also improves module performance of the model for 𝐴𝑈𝐶𝑅𝑂𝐶 and 𝐴𝑈𝐶𝑃𝑅  

compared to the stand-alone module. 

𝝀𝒔DR 𝑽𝑭𝟏 𝑻𝑭𝟏 𝑨𝑼𝑪𝑹𝑶𝑪 𝑨𝑼𝑪𝑷𝑹 

12% 0.72 0.74 0.86 0.76 

14% 0.73 0.74 0.87 0.76 

16% 0.72 0.74 0.86 0.76 

18% 0.72 0.72 0.86 0.73 

20% 0.72 0.71 0.86 0.74 

22% 0.73 0.71 0.86 0.76 

24% 0.72 0.74 0.86 0.76 

26% 0.72 0.74 0.87 0.76 

𝜶 𝑽𝑭𝟏 𝑻𝑭𝟏 𝑨𝑼𝑪𝑹𝑶𝑪 𝑨𝑼𝑪𝑷𝑹 

0 0.72 0.72 0.86 0.75 

0.25 0.72 0.73 0.86 0.75 

0.5 0.73 0.74 0.87 0.76 

0.75 0.72 0.73 0.86 0.75 

1 0.72 0.72 0.85 0.73 

Table 4: Subset Learner Lambda Decay Rate Tuning. We see best performance at 14% decay, 

suggesting less strict subsets yield better performance. Moreover, this performance slightly 

exceeds the base EHNN mode performance on 𝐴𝑈𝐶𝑅𝑂𝐶  and 𝐴𝑈𝐶𝑃𝑅  by 0.01. 

Table 5: Alpha Tuning. Alpha controls the balance of factual and counter-factual learning – 

a value of 1 allows only for factual learning and vice versa. We see the best results when 

equally balancing factual and counterfactual results, although differences are minor. 
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We next examine the feasibility of using the outputs of the explainability module to 

interpret its predictions. 

4.3 Contribution 3: We can assess the explainability-

augmented hypergraph neural network’s limitations 

by examining the self-explainability module’s 

explanations for its dementia risk classifications. 

(RQ3) 

Having implemented a self-explainability subset learner module, we now show that its 

output can be used to assess the model’s strengths and weaknesses in reasoning. 

4.3.1 Assessing hyperedge importance 

The module learns by assigning weights to each node-hyperedge connection. We can 

rank these scores for each subject as a form of explanation for its prediction. To 

understand underlying patterns in these subsets, we aggregate and rank these weights 

for correctly predicted positive cases across all patients.  

Since hypergraphs consider complex relationships between multiple features, it is not 

sufficient to look at only the average weights. A weight which is significant for one 

patient with a specific subset of co-morbidities may be less significant for a patient 

with a different set, so large hyperedges are likely to have a wider range of associated 

weight values. To demonstrate, Figure 11 shows a plot of the range against the total 

number of hyperedge-node instance counts for each hyperedge, considering only 

correctly predicted positive cases. This shows that large hyperedges are more likely to 

have a wider range of associated weights. Therefore, to identify edges with a relatively 

higher impact, we create a weighted score for each hyperedge 𝑒𝑖 as a sum of the min-

max normalized average weight and the percentage of weights in the hyperedge which 

are greater than the overall average of all weights in all hyperedges in equation 11: 

𝑠𝑐𝑜𝑟𝑒𝑒𝑖
=   

𝑤𝑒𝑖
− 𝑤𝑒𝑚𝑖𝑛

 

𝑤𝑒𝑚𝑎𝑥
−  𝑤𝑒𝑚𝑎𝑥

+ 
|𝑒𝑖  >  𝐸̅|

|𝑒𝑖|
 (11) 

Normalization allows us to express both parts of the score with a zero to one scaled 

number, so we can use this score to rank hyperedges. We assess the results of this 

ranking in the next section. 
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4.3.2 Hyperedge ranking analysis. 

We now use the hyperedge scores to gain understanding into the models reasoning. 

There are 396 hyperedges in the hypergraph, so we pick the top scoring hyperedges 

for analysis. The distribution is skewed: out of 396 hyperedges, only 55 (14%) score 

above one. We examine the top thirteen hyperedges, which scored over 1.5. A 

histogram of edge scores can be found in Appendix E. 

Table 6 shows these hyperedges, ranked by score. The most notable result in the table 

is that the edge encoding zero APOE4 alleles ranked 3rd despite the edge encoding 

presence of a dominantly inherited AD gene ranking 13th. While this seems 

contradictory, this result may be a result of how the model learns. In this analysis we 

are only able to assess the overall hyperedge scores; however, the model learns through 

higher-order relationships between hyperedges. Since the presence of APOE4 is likely 

a strong signal in isolation, the model may be strengthening the signal of the absence 

of APOE4 in relationship to other factors. To support this, we examine the strength of 

the APOE4 allele count hyperedge scores for each number of APOE4 alleles in Figure 

12. This shows comparative histograms of score distributions for each hyperedge 

smoothed with kernel density estimation for subjects by their number of APOE4 

alleles. The hyperedge representing no APOE4 alleles has a significantly wider range 

and higher average of edge scores than those representing one or two alleles present. 

Figure 11: Scatter Plot of Hyperedge Weight Range against Count of Relationships. Shows 

how range varies by the count of nodes for each edge. Hyperedges with more nodes have a 

larger range of hyperedge scores since each patient has a unique risk relationship. 
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This suggests that having no APOE4 allele is a signal to the model to focus on other 

relationships for classification. However, to conclusively answer this question, it 

would be necessary to develop a method to explain how edge scores relate to each 

other for different participants, which is outside of the scope of this study. 

Other scores are more in line with expectations – we see four examples of CDR scores 

in the top-ranking edges. There are also behavioural and cognitive signals, such as a 

lack of engagement in normal day to day activities, and links to frontotemporal lobar 

degeneration genealogy. We also see a relatively younger age range, which is likely 

receiving a high edge score for the same reason as the no APOE4 allele group. 

 Code Meaning Score Count 

1 _NACCFAM_0 No report of a first-degree family 

member with cognitive impairment 

2.00 560 

2 _NACCFTLD_1 In this family, is there evidence for a 

frontotemporal lobar degeneration 

mutation? 

1.65 7 

3 _E4_0 No E4 APOE alleles 1.65 621 

4 _JUDGMENT_3 Judgment and problem-solving: Severe 

impairment (CDR Score 3) 

1.61 1 

5 _JUDGMENT_2 Judgment and problem-solving: 

Moderate impairment  (CDR Score 2) 

1.61 11 

6 _COMMUN_2 Community affairs: Moderate 

impairment (CDR Score 2) 

1.59 3 

7 _ORIENT_2 Orientation: Moderate impairment 

(CDR Score 2) 

1.57 3 

8 _NACCCOGF_7 Fluctuating cognition noticed as first 

sign of impairment 

1.56 1 

9 _NACCFTDM_1 Subject has a hereditary frontotemporal 

lobar degeneration mutation 

1.56 7 

10 _AGE_50_55 Age range 50 to 55  1.48 41 

11 _STOVE_8 In the past 4 weeks, subject did not use 

stove 

1.48 31 

12 _SHOPPING_8 In the past 4 weeks, subject did not 

engage in shopping activities 

1.47 53 

13 _NACCADMU_1 Subject has dominantly inherited AD 

gene 

1.42 2 

 

Table 6: Top 13 Ranking Hyperedge Scores Learned by the Subset Learner. We see several 

expected results e.g. high CDR scores and signals of cognitive decline, but we also 

unexpected results such as no e4 APOE alleles. These may indicate that the model has scored 

these highly based on their relationship with other hyperedges. 
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Analysis of aggregate hyperedge scores has shown that the explainability module can 

provide insight into high level and complex patterns of the model’s decision-making 

process for classifying dementia prediction. However, additional work is required to 

understand the precise and multi-faceted causal relationships learned by the model. 

4.4 Discussion 

This EHNN model alone achieved a validation set 𝐹1 score of 0.73 supported by an 

equal test set 𝐹1 score. The model’s accuracy was 79%. The 𝐴𝑈𝐶𝑅𝑂𝐶 of 0.86 indicates 

that the model has good skill in distinguishing positive and negative classes. We 

achieve an 𝐴𝑈𝐶𝑃𝑅  of 0.75. In the context of a PR curve, a no skill model on our dataset 

would have an 𝐴𝑈𝐶𝑃𝑅  of 0.34 (equal to the proportion of positive classes), so 0.75 

demonstrates a good skill in classifying the positive case.  

After incorporating the factual and counter-factual self-explainability module we 

achieve and equal 𝐹1 score and slightly improve 𝐴𝑈𝐶𝑅𝑂𝐶  abd 𝐴𝑈𝐶𝑃𝑅  compared to the 

EHNN model alone, showing that explainability does not come at the cost of 

performance for this model. Figure 13 shows the 𝐴𝑈𝐶𝑅𝑂𝐶  of the best-tuned composite 

subset and EHNN model overlayed with the best tuned EHNN-only model, and Figure 

14 shows the same for 𝐴𝑈𝐶𝑃𝑅 . The composite model slightly improves performance 

Figure 12: Kernel Density Estimation Smoothed Histogram of Hyperedge Score Distribution 

for Different APOE4 Groups in the Correctly Classified Positive Class. We observe that the 

hyperedge representing no APOE4 alleles had higher edge scores than the hyperedges 

representing one or two alleles, suggesting that this is a signal to focus on other factors. 
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for both 𝐴𝑈𝐶𝑅𝑂𝐶 and 𝐴𝑈𝐶𝑃𝑅 . This suggests that incorporating factual and 

counterfactual learning improves the model’s ability to distinguish between classes 

and in reducing the number of false positives and false negatives, a desirable 

characteristic of a model in a clinical setting. For both models, the area under the left 

side of the 𝐴𝑈𝐶𝑃𝑅  curve is higher than the right, showing that both models are better 

at reducing false positives than false negatives, but the composite model has a slight 

advantage in reducing false negatives. This information is useful for clinicians who 

have context on whether a false positive or negative would be more harmful for a 

patient. 

To contextualize these results in the literature, we compare them against two recent 

studies which have similar design and objectives. Lin et al, (2018) performed 

experiments with SVM,  Logistic Regression and Random Forest classification models 

to predict dementia progression in a 4-year period using 348 clinical, non-invasive 

features on the NACC dataset. They report a best 𝐴𝑈𝐶𝑅𝑂𝐶  of 0.75 with a SVM model 

but do not report 𝐹1 or 𝐴𝑈𝐶𝑃𝑅  scores. Similarly, Pang et al, (2023) conducted 

experiments with SVM, LR and RF models. This study had a greater focus on progress 

to AD from MCI and MCI from normal cognition rather than general dementia 

progression but attempt to do so based only on clinical features. They report an 

𝐴𝑈𝐶𝑅𝑂𝐶  of 0.85 in predicting progression to AD from MCI in a 2-year period and 0.8 

over a 3-year period with a RF classifier. Again, no 𝐴𝑈𝐶𝑃𝑅  scores were reported. Our 

model outperforms both results in 𝐴𝑈𝐶𝑅𝑂𝐶, particularly over longer periods, by 

leveraging higher order relationships in the data. 

We have demonstrated that a hyperedge neural network can out-perform existing 

models for dementia detection. Further, we have done so in a well-defined and 

reproducible experiment context. This supports our hypothesis that hypergraph neural 

networks can yield better results by leveraging complex interrelationships between 

features.  

We also implemented a self-explainability sub-module which not only maintained 

model performance but also improved its capabilities in distinguishing between classes 

and in reducing false negatives, two clinically important tasks. We then applied 

rudimentary techniques on the aggregate output of the model’s reasoning which shows 

promising insight into the model’s reasoning. We found some evidence that the model 

is encoding complicated signals relating to higher order relationships in hyperedge 

weights. However, we are limited in a deeper examination of the model’s reasoning as 

we can only observe patterns across individual hyperedge scores. Further, the model’s 

overall performance is good, but not excellent, and we observed many issues in the 

EDA, so we can expect a certain amount of noise and bias to mislead this analysis. 

Therefore, there we suggest that this is a promising area for future research alongside 

improvements in data collection and further advances in model architecture. 
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Figure 13: Receiver Operating Characteristic Curves for Composite and EHNN-only models. 
Shows that the composite, explainable model achieved very similar performance in 

distinguishing classes as the base model. The steep incline, followed by a gradual increase of 

the curve shows the model identifies a low number of FPs and a high number of TPs. 

Figure 14: Precision Recall Curves for Composite and EHNN-only models. Shows that the 

composite model is slightly better at classifying the positive case than the base model. 

Precision (TP / TP + FP) decreases rapidly only after recall (TP / TP + FN) exceeds 0.8. Since 

this curve is has a larger area left of center, the models are slightly better at reducing false 

positives than false negatives. 
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Chapter 5  

Conclusion and Future Work 

Our study has provided the following contributions: 

1. Hypergraph neural networks can outperform existing methods for 

dementia progression prediction with clinical and genetic features. 

2. Hypergraph neural network performance can be maintained when 

implementing self-explainability. 

3. We can use explainability to assess the model’s reasoning. 

We achieved these by training a cutting edge-model on a refined dataset and applying 

a self-explainability module to analyse and evaluate the model’s reasoning.  

The dataset included only clinical, low-cost and non-invasive features. Achieving 

good, clinically relevant results with this data has significant clinical implications. 

First, such a tool can provide clinicians with a means to pre-screen patients for 

dementia risk before using invasive and expensive methods, reducing the ethical 

decision making burden (Van Der Schaar et al., 2022). Further, dementia prevalence 

is set to increase in low- and middle-income countries as a result of increasing life 

expectancy (Farina et al, 2023) where more expensive methods may not be feasible. 

The WHO is aiming for 75% of such countries to have a national dementia plan in 

place by 2025 (Beuer et al, 2022). Such a tool trained for specific populations can 

support this target by alleviating the burden of diagnosis costs where they are most 

sensitive. Further, as we showed that this tool may discover complex patterns, with 

population specific training, it may be able to discover such patterns of risk specific to 

a developing nation population or sub-population. 

Explainability is crucial for clinician trust and can help to uncover previously unknown 

patterns of risk (Rajpurkar et al., 2022). This study has shown that explainability is not 

only possible with a dementia prediction hypergraph neural network, but also that it 

can improve model performance. We found patterns which agree with existing 

literature – such as that CDR scores alone are a good predictor for dementia progress 

(Kim et al, 2017), and results which seem at first to disagree with well-established risk 

factors: that APOE4 allele count (Livingston et al, 2017) and family history of 

dementia (Wolters et al, 2017) are strong predictors of dementia progression. 

However, further examination showed that these surprising results are most likely the 

result of complex patterns which the model uncovers in order to diagnose individuals 
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who do not exhibit these characteristics which the techniques used in this study could 

not fully uncover. 

Indeed, the model’s overall performance and the representation of features in the 

underlying data set show that it would be premature to draw concrete conclusions from 

its reasoning or to recommend deploying the model in a clinical setting. The techniques 

used to assess the influence of edge weights are rudimentary as we do not currently 

have a method which fully leverages the higher order relationships learned in the 

hyperedge weights. For example, although Terrosu (2022) found a relationship 

between atrial fibrillation and dementia, the specific mechanisms are unknown and 

likely multifactorial involving several co-morbidities. A module which can express 

these relationships would provide significant advancements in our understanding of 

this relationship. Further, the study is primarily limited by the data set used to train the 

model; it has several biases, particularly in race and education level and poor 

representation of many features.  

Therefore, future work to progress towards a more performant model includes: 

• A concerted data collection effort to produce a population-level collection of 

data with good feature representation and without biases. 

• Exploration of self-explainability techniques for self-attention transformers 

which can expose learned higher order relationships for hypergraphs. 

Two recent and promising studies may be adapted to develop more advanced global 

explanations for hypergraphs. Azzolin et al (2023) have developed an ML technique 

called GLGExplainer for Graph Neural Networks which uses aggregate local 

explanations, such as those produced in our combined model, to learn concepts as 

prototypical features of explanations and have demonstrated its efficacy with hospital 

interaction networks. This technique could be modified to work with hypergraph 

outputs to uncover important concepts such as specific interactions between 

comorbidities. Maleki et al (2023) have also developed a technique more specific to 

Hypergraph Neural Networks called HyperEx which aims to learn node-hyperedge 

importance scores by generating explanatory sub-hypergraphs. This technique is a 

more sophisticated approach to the method used in this paper and may provide more 

robust results; however, it may still suffer in explaining more complex multi-edge 

relationships. Nevertheless, the development of new techniques for graph and 

hypergraph explanation indicate that our model may be further improved so that it can 

be confidentially and valuably deployed in a real-world clinical setting. 

In summary, although limited, this experimental project has shown the potential of 

hypergraph neural networks to predict dementia progression and reveal underlying 

patterns in a clinically relevant manner. 
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Appendix A  

CDR Score Definitions 

 
None 0 Questionable 0.5 Mild 1 Moderate 2 Severe 

Memory No memory loss or 

slight; inconsistent 

forgetfulness 

Consistent slight 

forgetfulness; partial 

recollection of 

events; “benign” 

forgetfulness 

Moderate memory 

loss: more marked 

for recent events; 

defect interferes with 

everyday activity 

Severe memory loss, 

only highly learned 

material retained: 

new material rapidly 

lost 

Severe memory loss, 

only fragments 

remain 

Orientation Fully oriented Fully oriented but 

with slight difficulty 

with time 

relationships 

Moderate difficulty 

with time 

relationships; 

oriented for place at 

examination; may 

have geographic 

disorientation 

elsewhere 

 

  

Severe difficulty 

with time 

relationships; usually 

disoriented to time, 

often to place 

Oriented to person 

only 

Judgment 

and 

Solves everyday 

problems and 

handles business and 

Slight impairment in 

solving problems, 

Moderate difficulty 

in handling 

problems, 

Severely impaired in 

handling problems, 

similarities and 

Unable to make 

judgments or solve 

problems 
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problem 

solving 

financial affairs well; 

judgment good in 

relation to past 

performance 

similarities and 

differences 

similarities and 

differences; social 

judgment usually 

maintained 

differences; social 

judgment usually 

impaired 

Community 

affairs 

Independent function 

as usual in job, 

shopping, volunteer, 

and social groups 

Slight impairment in 

these activities 

Unable to function 

independently at 

these activities 

though may still be 

engaged in some; 

appears normal to 

casual inspection 

No pretense of 

independent function 

outside the home; 

appears well enough 

to be taken to 

functions outside the 

family home 

Appears too ill to be 

taken to functions 

outside the family 

home 

Home and 

hobbies 

Life at home, hobbies 

and intellectual 

interests well 

maintained 

Life at home, hobbies 

and intellectual 

interests slightly 

impaired 

Mild but definite 

impairment of 

functions at home; 

more difficult chores, 

and complicated 

hobbies and interests 

abandoned 

Only simple chores 

preserved; very 

restricted interests, 

poorly maintained 

No significant 

function in the home 

Personal 

care 

Fully capable of self-

care 

Fully capable of self-

care 

Needs prompting Requires assistance 

in dressing, hygiene 

and keeping of 

personal effects 

Requires much help 

with personal care; 

frequent 

incontinence 

Morris (1993)
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Appendix B  

Supplemental Demographic EDA 

Diagrams 

 

 

 

Figure 15: Gender Distribution in the 3-year Cohort. There is a slight bias towards male 

participants which may impact model learning. 
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Figure 16: Progression by Gender in the 3-year Cohort. Shows the proportion of progression 

to dementia (global CDR score ≥ 1 within period) in men and women within the 3-years 

cohort. A slightly higher percentage of women progress. 

Figure 17: Race Distribution in the 3-year Cohort. The dataset is heavily biased to White 

participants with almost no representation for some races. 
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Figure 18: Progression by Race in the 3-year Cohort. Notably the progression rate of White 

and Asian participants is 13.2 and 8.9 percentage points higher than the next highest group 

(Multiracial), excluding Native Hawaiian or Pacific Islanders due to low representation. 

Figure 19: Distribution of Education in the 3-year Cohort. Notably, there is a very low 

percentage of participant with only a high school education and a very high percentage with 

a doctorate. 
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Figure 20: Progression by Education Level in the 3-year Cohort. We see a slight increase in 

progression rates as education level declines except for the up to high school group. The low 

progression rate in this group may be due to poor representation. 
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Appendix C  

Supplemental Risk Factor EDA 

Diagrams 

 

 

 

Figure 21: Progression by Beta Blocker Use in the 3-year Cohort. We note a significantly 

higher rate of progression in the group which does not use beta blockers. 
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Figure 22: Distribution of e4 Allele Count in the 3-year Cohort. e4 alleles are a known risk 

factor in AD due to their role in increasing amyloid-beta build up. The group with 2 copies is 

the least represented by a large margin. 

Figure 23: Progression by e4 Allele Count in the 3-year Cohort. Progression rates are over 

50% higher for those with one copy and over 100% higher for those with two copies compared 

to those with none. 
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Appendix D  

NACC Data Structure Overview 

Columns Section Descriptor 

1 – 12 Administrative data 

13 – 26 Milestone dates 

27 – 36 Derived subject information 

37 – 38 Telephone survey details 

39 – 63 Subject demographics 

64 – 85  Co-participant demographics 

86 – 102  Subject family history 

103 – 125  Subject medications 

126 – 200  Subject health history 

201 – 217  Physical health measurements 

218 – 234  Hachinski Ishemic Score and cardio-vascular history 

235 – 289  Unified Parkinson’s Disease Rating Scale scores 

290 – 299  CDR Scores 

300 – 325 Neuropsychiatric Inventory Questionnaire 

326 – 342 Geriatric Depression Scale Scores 

343 – 352 Functional Activities Questionnaire 

353 – 399  Physical / Neurological exam findings 

400 – 459  Clinician judgement of symptoms 

459 – 591  Neuropsychological Battery Scores, including MMSE 

592 – 733  Clinician Diagnoses 

734 – 766  Clinician-assessed Medical Conditions 

767 – 792* Genetic Summary Data (* available in a separate data sheet) 

 

 

Table 7: NACC Uniform Data Set Section Breakdown. The NACC dataset is comprised of 

many columns of data covering a range of demographic and medical features.  
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Appendix E  

Supplemental Experiment Results  

 

WD SAHs DO HCLs 𝑽𝑭𝟏 𝑻𝑭𝟏 Epoch 

0 4 0 64 0.714 0.718 82 

0 4 0 128 0.717 0.724 77 

0 4 0 256 0.721 0.714 88 

0 4 0.1 64 0.717 0.724 108 

0 4 0.1 128 0.720 0.734 88 

0 4 0.1 256 0.728 0.727 93 

0 8 0 64 0.714 0.724 79 

0 8 0 128 0.724 0.729 121 

0 8 0 256 0.722 0.719 110 

0 8 0.1 64 0.716 0.719 118 

0 8 0.1 128 0.724 0.733 80 

0 8 0.1 256 0.727 0.742 92 

0.1 4 0 64 0.670 0.692 198 

0.1 4 0 128 0.695 0.722 169 

0.1 4 0 256 0.698 0.710 108 

0.1 4 0.1 64 0.697 0.728 177 

0.1 4 0.1 128 0.706 0.709 111 

0.1 4 0.1 256 0.704 0.709 193 

0.1 8 0 64 0.697 0.728 197 

0.1 8 0 128 0.689 0.708 185 

0.1 8 0 256 0.696 0.710 190 

0.1 8 0.1 64 0.693 0.714 172 

0.1 8 0.1 128 0.696 0.721 195 

0.1 8 0.1 256 0.701 0.710 107 

Table 8: Grid search on EHNN Hyperparameters with Learning Rate of 0.001. 

WD = Weight Decay; DO = Hypernetwork Dropout; SAHs = Self-attention Heads; HLCs = 

Hidden Layer Channels; 𝑉𝐹1= Validation Set 𝐹1 Score;  𝑇𝐹1 = Test Set 𝐹1 Score; Epoch = 

Epoch where the best validation 𝐹1 score was achieved in that run. The best result was 

achieved with 0 WD, 4 SAHs, 0.1 DO and 256 HLCs. The test 𝐹1 suggests no overfitting to 

validation set. We see overall worse performance and later convergence with WD, no benefit 

of extra SAHs, slight improvements with DO and best performance with high HCL.  
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WD SAHs DO HCLs 𝑽𝑭𝟏 𝑻𝑭𝟏 Epoch 

0 4 0 64 0.715 0.731 250 

0 4 0 128 0.721 0.735 262 

0 4 0 256 0.722 0.750 223 

0 4 0.1 64 0.709 0.723 350 

0 4 0.1 128 0.716 0.736 391 

0 4 0.1 256 0.728 0.740 314 

0 8 0 64 0.718 0.736 383 

0 8 0 128 0.719 0.734 321 

0 8 0 256 0.729 0.740 200 

0 8 0.1 64 0.709 0.713 448 

0 8 0.1 128 0.717 0.732 306 

0 8 0.1 256 0.721 0.735 281 

0.1 4 0 64 0.647 0.666 499 

0.1 4 0 128 0.652 0.670 499 

0.1 4 0 256 0.663 0.693 488 

0.1 4 0.1 64 0.644 0.664 498 

0.1 4 0.1 128 0.647 0.667 499 

0.1 4 0.1 256 0.649 0.668 493 

0.1 8 0 64 0.647 0.666 499 

0.1 8 0 128 0.652 0.670 499 

0.1 8 0 256 0.661 0.692 485 

0.1 8 0.1 64 0.644 0.664 498 

0.1 8 0.1 128 0.647 0.667 499 

0.1 8 0.1 256 0.649 0.668 493 

 

 

Table 9: Grid search on EHNN Hyperparameters with Learning Rate of 0.0001. 
WD = Weight Decay; DO = Hypernetwork Dropout; SAHs = Self-attention Heads; HLCs = 

Hidden Layer Channels; 𝑉𝐹1= Validation Set 𝐹1 Score;  𝑇𝐹1 = Test Set 𝐹1 Score; Epoch = 

Epoch where the best validation 𝐹1 score was achieved in that run.  

We see overall worse results compared to a learning rate of 0.01, with much later convergence 

overall. Again, we observe worse performance with WD and no significant difference in 

additional SAHs, in this case no clear difference in using DO and again improvement in 

increasing HLCs. Later convergence is likely due to training instability due to the higher 

learning rate. 
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Figure 24: Training and Validation Loss Curves for Best LR 0.0001 Grid Search Result. 
Shows training and validation curves with LR 0.0001, 0 WD, 8 SAHs, 0 DO and 256 HLCs. 

The model shows overfitting at around 150 epochs and achieves the best result when 

significantly overfit. 

Figure 25: Training and Validation Loss Curves for Best LR 0.001 Grid Search Result. 
Shows training and validation loss curves with LR 0.001, 4 SAHs and 256 HLCs. Best score 

is achieved on epoch 93 denoted by the dotted line, after which overfitting is observed. 
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Figure 26: Feature Subset Performance 

Over Periods. Shows validation and test set 

𝐹1 scores for each feature subset over 

different time periods. Note the best 

performance in the filtered feature set. Most 

other feature sets require longer time 

periods to achieve comparative scores 

suggesting a trade-off between cohort size 

and number of features for performance 
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Figure 27: Histogram of Hyperedge Score Distribution. Of 396 hyperedges, 55 scored above 

1, showing that a small number of hyperedges had the largest impact. 
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